24 research outputs found

    SBML for optimizing decision support's tools

    Full text link
    Many theoretical works and tools on epidemiological field reflect the emphasis on decision-making Tools by both public health and the scientific community, which continues to increase. Indeed, in the epidemiological field, modeling tools are proving a very important way in helping to make decision. However, the variety, the large volume of data and the nature of epidemics lead us to seek solutions to alleviate the heavy burden imposed on both experts and developers. In this paper, we present a new approach: the passage of an epidemic model realized in Bio-PEPA to a narrative language using the basics of SBML language. Our goal is to allow on one hand, epidemiologists to verify and validate the model, and the other hand, developers to optimize the model in order to achieve a better model of decision making. We also present some preliminary results and some suggestions to improve the simulated model

    Knowledge Discovery in Database: Induction Graph and Cellular Automaton

    Get PDF
    In this article we present the general architecture of a cellular machine, which makes it possible to reduce the size of induction graphs, and to optimize automatically the generation of symbolic rules. Our objective is to propose a tool for detecting and eliminating non relevant variables from the database. The goal, after acquisition by machine learning from a set of data, is to reduce the complexity of storage, thus to decrease the computing time. The objective of this work is to experiment a cellular machine for systems of inference containing rules. Our system relies upon the graphs generated by the SIPINA method. After an introduction aiming at positioning our contribution within the area of machine learning, we briefly present the SIPINA method for automatic retrieval of knowledge starting from data. We then describe our cellular system and the phase of knowledge post-processing, in particular the validation and the use of extracted knowledge. The presentation of our system is mostly done through an example taken from medical diagnosis

    Combining Fuzzy AHP with GIS and Decision Rules for Industrial Site Selection

    Get PDF
    This study combines Fuzzy Analytic Hierarchy Process (FAHP), Geographic Information System (GIS) and Decision rules to provide decision makers with a ranking model for industrial sites in Algeria. A ranking of the suitable industrial areas is a crucial multi-criteria decision problem based on socio-economical and technical criteria as on environmental considerations. Fuzzy AHP is used for assessment of the candidate industrial sites by combining fuzzy set theory and analytic hierarchy process (AHP). The decision rule base serves as a filter that performs criteria pre-treatment involving a reduction of their numbers. GIS is used to overlay, generate criteria maps and for visualizing ranked zones on the map. The rank of a zone so obtained is an index that guides decision-makers to the best utilization of the zone in future

    Decision Support Based on Bio-PEPA Modeling and Decision Tree Induction: A New Approach, Applied to a Tuberculosis Case Study

    Get PDF
    The problem of selecting determinant features generating appropriate model structure is a challenge in epidemiological modelling. Disease spread is highly complex, and experts develop their understanding of its dynamic over years. There is an increasing variety and volume of epidemiological data which adds to the potential confusion. We propose here to make use of that data to better understand disease systems. Decision tree techniques have been extensively used to extract pertinent information and improve decision making. In this paper, we propose an innovative structured approach combining decision tree induction with Bio-PEPA computational modelling, and illustrate the approach through application to tuberculosis. By using decision tree induction, the enhanced Bio-PEPA model shows considerable improvement over the initial model with regard to the simulated results matching observed data. The key finding is that the developer expresses a realistic predictive model using relevant features, thus considering this approach as decision support, empowers the epidemiologist in his policy decision making

    Improving Retrieval Performance of Case Based Reasoning Systems by Fuzzy Clustering

    Get PDF
    Case-based reasoning (CBR), which is a classical reasoning methodology, has been put to use. Its application has allowed significant progress in resolving problems related to the diagnosis, therapy, and prediction of diseases. However, this methodology has shown some complicated problems that must be resolved, including determining a representation form for the case (complexity, uncertainty, and vagueness of medical information), preventing the case base from the infinite growth of generated medical information and selecting the best retrieval technique. These limitations have pushed researchers to think about other ways of solving problems, and we are recently witnessing the integration of CBR with other techniques such as data mining. In this article, we develop a new approach integrating clustering (Fuzzy C-Means (FCM) and K-Means) in the CBR cycle. Clustering is one of the crucial challenges and has been successfully used in many areas to develop innate structures and hidden patterns for data grouping [1]. The objective of the proposed approach is to solve the limitations of CBR and improve it, particularly in the search for similar cases (retrieval step). The approach is tested with the publicly available immunotherapy dataset. The results of the experimentations show that the integration of the FCM algorithm in the retrieval step reduces the search space (the large volume of information), resolves the problem of the vagueness of medical information, speeds up the calculation and response time, and increases the search efficiency, which further improves the performance of the retrieval step and, consequently, the CBR system

    Diabetes Diagnosis by Case-Based Reasoning and Fuzzy Logic

    Get PDF
    In the medical field, experts’ knowledge is based on experience, theoretical knowledge and rules. Case-based reasoning is a problem-solving paradigm which is based on past experiences. For this purpose, a large number of decision support applications based on CBR have been developed. Cases retrieval is often considered as the most important step of case-based reasoning. In this article, we integrate fuzzy logic and data mining to improve the response time and the accuracy of the retrieval of similar cases. The proposed Fuzzy CBR is composed of two complementary parts; the part of classification by fuzzy decision tree realized by Fispro and the part of case-based reasoning realized by the platform JColibri. The use of fuzzy logic aims to reduce the complexity of calculating the degree of similarity that can exist between diabetic patients who require different monitoring plans. The results of the proposed approach are compared with earlier methods using accuracy as metrics. The experimental results indicate that the fuzzy decision tree is very effective in improving the accuracy for diabetes classification and hence improving the retrieval step of CBR reasoning

    Contribution to the Association Rules Visualization for Decision Support: A Combined Use Between Boolean Modeling and the Colored 2D Matrix

    Get PDF
    In the present paper we aim to study the visual decision support based on Cellular machine CASI (Cellular Automata for Symbolic Induction). The purpose is to improve the visualization of large sets of association rules, in order to perform Clinical decision support system and decrease doctors’ cognitive charge. One of the major problems in processing association rules is the exponential growth of generated rules volume which impacts doctor’s adaptation. In order to clarify it, many approaches meant to represent this set of association rules under visual context have been suggested. In this article we suggest to use jointly the CASI cellular machine and the colored 2D matrices to improve the visualization of association rules. Our approach has been divided into four important phases: (1) Data preparation, (2) Extracting association rules, (3) Boolean modeling of the rules base (4) 2D visualization colored by Boolean inferences

    Improving process algebra model structure and parameters in infectious disease epidemiology through data mining

    Get PDF
    Computational models are increasingly used to assist decision-making in public health epidemiology, but achieving the best model is a complex task due to the interaction of many components and variability of parameter values causing radically different dynamics. The modelling process can be enhanced through the use of data mining techniques. Here, we demonstrate this by applying association rules and clustering techniques to two stages of mod- elling: identifying pertinent structures in the initial model creation stage, and choosing optimal parameters to match that model to observed data. This is illustrated through application to the study of the circulating mumps virus in Scotland, 2004-2015

    GIS-based Multi-Criteria Analysis and if… then… rules for ranking industrial zones

    No full text
    Poster Papers of ISCRAM-Med 2016 - Third International Conference on Information Systems for Crisis Response and Management in Mediterranean Countries. October 26-28, 2016. Universidad Carlos III de Madrid (Spain)The approach proposed in this article allows, from a study of geographic, environmental and socio-economic criteria, to cooperate If Then rules, Analytic Hierarchic Process (AHP) and geographic information system (GIS) for spatial choosing of the right site for installing industrial projects. The result obtained by IAHP (Intelligent Analytic Hierarchic Process) for ranking industrial zones in Algeria is refined by a viewing GIS-IZ (Geographic Information System for Industrial Zones). The IAHP unit ranks industrial zones using AHP after reduction of judgment criteria by If… then… rules and GIS-IZ module to the visualization of these zones on the map. The system was designed for the evaluation of a new methodology of multi-criteria analysis guided by data mining. Only the Spatial Decision Making Support System (SDMSS) is presented here
    corecore